Fórmula de Bhaskara - Como encontrar as raízes de uma equação do segundo grau
Encontre as raízes da equação do segundo grau x² - 5x + 6 = 0.
Podemos resolver esse exercício por meio da fórmula de Bhaskara.
Seja uma equação do segundo grau ax² + bx + c = 0 com a, b e c coeficientes reais, podemos encontrar as suas raízes por meio da fórmula: x = (-b ± √Δ) / 2a e Δ = b² - 4ac
a = 1
b = -5
c = 6
Δ = b² - 4ac = (-5)² - 4(1)(6) = 25 - 24 = 1
√Δ = 1
x = (-(-5) ± 1) / 2(1) = (5 ± 1)/2
x1 = (5+1)/2 x2 = (5-1)/2
x1 = 3 x2 = 2
Confira aqui uma lista com mais exemplos de exercícios sobre equações do segundo grau.
Podemos resolver esse exercício por meio da fórmula de Bhaskara.
Seja uma equação do segundo grau ax² + bx + c = 0 com a, b e c coeficientes reais, podemos encontrar as suas raízes por meio da fórmula: x = (-b ± √Δ) / 2a e Δ = b² - 4ac
a = 1
b = -5
c = 6
Δ = b² - 4ac = (-5)² - 4(1)(6) = 25 - 24 = 1
√Δ = 1
x = (-(-5) ± 1) / 2(1) = (5 ± 1)/2
x1 = (5+1)/2 x2 = (5-1)/2
x1 = 3 x2 = 2
Confira aqui uma lista com mais exemplos de exercícios sobre equações do segundo grau.