Exercícios Resolvidos sobre Teorema de Pitágoras (Fórmula e aplicações em questões geometria)
Caro estudante,
Elaboramos uma lista com questões de matemática sobre o Teorema de Pitágoras, provenientes de concursos públicos e vestibulares para você que está se preparando para exames neste ano. Em algumas questões, outros temas da geometria são cobrados em conjunto com o teorema de Pitágoras.
Imagem ilustrativa: fórmula do Teorema de Pitágoras
A lista de exercícios está ordenada em ordem de dificuldade. Recomendamos que você reserve um tempo, resolva todos eles e depois confira o gabarito com a resolução passo a passo. Desejamos sucesso nos estudos.
Lista de Exercícios sobre Teorema de Pitágoras
Exercício 1 - (ENEM PPL 2019) A unidade de medida utilizada para anunciar o tamanho das telas de televisores no Brasil é a polegada, que corresponde a 2,54 cm. Diferentemente do que muitos imaginam, dizer que a tela de uma TV tem X polegadas significa que a diagonal do retângulo que representa sua tela mede X polegadas, conforme ilustração.
O administrador de um museu recebeu uma TV convencional de 20 polegadas, que tem como razão do comprimento (C) pela altura (A) a proporção 4 : 3, e precisa calcular o comprimento (C) dessa TV a fim de colocá-la em uma estante para exposição.
A tela dessa TV tem medida do comprimento C, em centímetro, igual a
A 12,00. B 16,00. C 30,48. D 40,64. E 50,80.
>> Link para a solução deste exercício
Exercício 2 - (UNICAMP 2018) Considere que o quadrado 𝐴𝐵𝐶𝐷, representado na figura abaixo, tem lados de comprimento de 1 𝑐𝑚, e que 𝐶 é o ponto médio do segmento 𝐴𝐸. Consequentemente, a distância entre os pontos 𝐷 e 𝐸 será igual a
>> Link para a solução deste exercício
Exercício 3 - (ENEM 2019) Construir figuras de diversos tipos, apenas dobrando e cortando papel, sem cola e sem tesoura, é a arte do origami (ori = dobrar; kami = papel), que tem um significado altamente simbólico no Japão. A base do origami é o conhecimento do mundo por base do tato. Uma jovem resolveu construir um cisne usando a técnica do origami, utilizando uma folha de papel de 18 cm por 12 cm. Assim, começou por dobrar a folha conforme a figura.
Após essa primeira dobradura, a medida do segmento AE é
A 2√22 cm.
B 6√3 cm.
C 12 cm.
D 6√5 cm.
E 12√2 cm
>> Link para a solução deste exercício
Exercício 4 - (ENEM 2020) No período de fim de ano, o síndico de um condomínio resolveu colocar, em um poste, uma iluminação natalina em formato de cone, lembrando uma árvore de Natal, conforme as figuras 1 e 2.
A árvore deverá ser feita colocando-se mangueiras de iluminação, consideradas segmentos de reta de mesmo comprimento, a partir de um ponto situado a 3 m de altura no poste até um ponto de uma circunferência de fixação, no chão, de tal forma que esta fique dividida em 20 arcos iguais. O poste está fixado no ponto C (centro da circunferência) perpendicularmente ao plano do chão.
Para economizar, ele utilizará mangueiras de iluminação aproveitadas de anos anteriores, que juntas totalizaram pouco mais de 100 m de comprimento, dos quais ele decide usar exatamente 100 m e deixar o restante como reserva.
Para que ele atinja seu objetivo, o raio, em metro, da circunferência deverá ser de
A 4,00. B 4,87. C 5,00. D 5,83. E 6,26.
>> Link para a solução deste exercício
Exercício 5 - (Professor Docente I - Matemática - 2014 - Banca CEPERJ) As medidas de um cateto e da hipotenusa de um triângulo retângulo são respectivamente 2a e a√7. A tangente do ângulo oposto ao menor lado nesse triângulo é:
a) (√3)/2
b) (√3)/3
c) (2√3)/3
d) 2√3
e) 3√3
>> Link para a solução deste exercício
Exercício 6 - (UNICAMP 2019) Considere um paralelepípedo retângulo, cujas arestas têm comprimento 6 𝑐𝑚, 8 𝑐𝑚 e 10 𝑐𝑚, e um triângulo cujos vértices são os centros (intersecção das diagonais) de três faces de dimensões distintas, como ilustra a figura a seguir. O perímetro 𝑃 desse triângulo é tal que